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Dynamic Response and Control of Multipass Heat Exchangers
MASAMI MASUBUCHI

Introduction

Pure parallel-and counterflow heat exchangers have been analyzed

exactly (1),0(2A and their controllability have been extensively

discussed in the literatures , For muulti-pF.ss heat exchanger•,.

many kinds of researches on the mean temperature difference (-Y ,

and on steady temperature distributions (11) have been published,

but there have been few on dynamic analysis.

However, from the control engineer's point of view, process dynamics

is one of the most important subjects.

The dynamic response of the system is dependent not only on the

mean temperature difference, but also on other system parameters such

at fluid velo~ies, heat capacities of the fluids and tube-walls, 'Y2¢
etc.. The transient response seems quite difficult to calculate, but

the frequency response analysis is simpler and is used throughout

this paper.

The author extended the P.Profos's basic partial differential

equation (12) and analyzed exactly the dynamic characteristics of

1-2,3,4, - ,2n,2n+l pass heat exchangers.

The 3rd order characteristic equations governing the heat exchange

processes in each multi-pass heat exchanger, and the transfer function

formulas which involve the roots of the said equation are obtained
and presented.

Numerical examples of frequency response of each case with no solid

capacity have also been shown.

Nomenclature

The following nomenclature is used in this paper:

A a 2  - heat exchange surface area

a d-. kA/q, a,= kA/q 1

i umbers in parentheses refer to similarly numbered references
in bibliography at the end of the paper.
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a dl. = hA/q, a,*= hlA/ql, a'= hsA/q
b dl. = hA/(Cv), bl=hA/(Chvl), b 2 =hA/(Chvl), bs=hsAl(C•v)

C kcal/m*C = series and side capacity
H m = total length of shell

h kcal/m2 mnoC - film coefficient of heat transfer, h tube-side,

h shell-side, h. side capacity-side
k kcal/mmnOC =overall coefficient of heat transfer
L mn - dead time, H/v=L, H/vl= LI

1 dl. = /H
p = variable in auxiliary eouation

q kcal/mn*C = vw, ql= VlW1

r dl. = v,/v =L/LI
s dl. = j., -= T-
t an - time
U m = peripheral length of heat exchange surface
u= variable ( Appendix )
v variable ( Appendix e

or m/mn = fluid velocity, vI tube-side, v shell-side

w kcal/m0 C - heat capacity of fluid per unit length
T a = running length of shell measured from shell input

M1' O2' M = parameters defined by Equation (3)

P' 029 03 = parameters defined by Equation (3)
SDC = temperature of shell fluid in lumped system

e Dc - temperature of fluid, e shell-side, el"e2,e3,--
tube-side

"dl. = tiL1
49 C - temperature of solid,3 series capacity,• side capacity

W dl. = circular frequency

and dl. = dimensionless
Subscripts: 1,2,3, - = tube-side, no subscript = shell-side

i = input, 0 = output
h = series capacity, s = side capacity

U
Basic Assumptions

1. Fluid velocities, heat transfer coefficients are all constant and
do not change with the temperature of fluid or heat exchange surfaces.

2. Each cross section is constant. 's
3. Complete mixing in crosswise directions of each flow exists.

A- 
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4. The heat conductivi- of tube-and shell-walls are infinite in

the directions at ri angles to the flow and zero in flow

directions.

5. There is no heat loss to outer circumferences.

The transfer function is taken to be the dynamic ratio of the

outlet temperature of one fluid to the inlet temperature of another

fluid. Considering sinusoidal solution, sinusoidal temperature

variation is superposed on the steady state temperature, so the

above definition is enough to consi- r.

Fundamental Equations

The following relation exists between a fluiC at temperature e

and a solid surface at temperature 9' through which heat exchange

takes place.

Using nondimensional ,2, and al,, gives

S+ )

If the tube-wall is infinitely thin, Y can be replaced by the

temperature of another fluid, and a0replaced by a. This fundamental

equation applies to e,e 1 ,e 2, --- in the following.

1-2 Pass Heat Exchanger (13)

Case P-C:
The "P-C" flow pattern is shown in Fig.l. In this case, the tube

fluid flows first from left to right, turns around at the right end,
and finally flows back to the left, resulting in a parallel-flow
followed by a counter flow. The shell fluid is always assumed to
flow from the left end to the right end. Both inside and outside tube-
walls are assumed to be infinitely thin so that there will be neither

series nor side capacity to be considered.
Assuming equal dimensions and conditions for each tube-pass and
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S y-0 P C el

Q l ei e, SHELL SIOE FLUID t-_ -Q _.
I,

qOk ý- (b)- -00

CS BAFFLE PLATE'1  Fig.2 Case P-C (a) shell-side
11.11111 (VUWEI FUIID 60 input; (b) tube-side input.

Pig.l 1-2 pass heat exchanger snow-
Ing symbolism.

equal U for shell-and tube-fluid, the fundamental equations are,

i zz

,. + I =,a(9,+0e)f-ta(e;-e)
The solution of Equations (1) for a sinusoidal input signal

are rke - ,C 2 k -A j N - s

r(CI e +c~e ±C6e"ajeS

where, C1 , 02, C3 are the integration constants, and x, P are:

+ i , 4, (3)

+'S +2L -7 +is+ 1  +' pj+i+aa,

PI' P2' P3 are the three roots of

t±1za+s +~si t,3-~ ta,){I+ il) +2al}= 0 (4)
The roots are all complex ( see Appendix ).

Shell-side input: The C1 , C2, C3 can be determined from the following

boundary conditions (Fig.2(a)).

orO PI~C, + AcL-,Cz e0z+s4e

= + -c'e" + '~Ceht+
The substitution of the results thus obtained into Equations (2)
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I1 -0 en ) 0 Wihitie n

(0(b Fig.4 With side capacity. 9S 96

Fig.3 Case C-P (a) shell-side in- Fig.5 With series and side

put; (b) tube-side input. capacity.

and solving for e2 0 /ei (= Gpc_st(s)) gives the transfer function.

(c,- XO,-•8,)e + (,-,,-•A - ,' -aX,,- ev )l

(5)
If input and output are exchanged with each other (Fig.2(b)), we

obtain the following transfer function through a similar procedure:

4 (v~-~1 ~~ ~ (oIfsY,82-A)e
(6)

Static Characteristics:

This is the case when s=O in Equations (5),(6). For s=O, from

Equation (4), three roots are

which give 
,t = 

, k3(1 =. 0- ,-(-1 _ =C(3 = _P

Introducing these values into Equations (5),(6), and rearranging,
we obtain 2Aj

and (6'

where, J
(5),(6#) are the static characteristics known as temperature efficiency

of the heat exchanger (14),
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Case C-P:
Counterflow at input side, parallel-flow at output side ( See Fig.3 ).

The fundamental equations are as follows,1 - iB

+ 11= j('9_q \(7)

By solving these equations, the 3rd order characteristic equation

identical to Equation (4) can be obtained. The temperatures are:r = (tv,C•,+c¢Ce +,ce•L e"

~ 6~ (~I~pZ~e+~C~e~',e(8)

where, C1 , C2, C3 are the constants of integration, a, 0 can be

expressed by the same equation as (3). Through the same procedure as
before, we get

+ (lat-06 ý -06 )e ±gI~Z

(9)

a. Co -( v~h e o~ +

The static characteristics are, (10)

from Equation (9) =cpt(o)-=

from Equation (10) Gj-q. (0)= 2Z

With Side Capacity
Assume that the side capacity ( thermal capacity of shell wall )

has infinite thermal resistance in the axial and no thermal resistance
in the radial directions.

In the case P-C ( same as C-P ), for example, the fundamental
equations are ( See Fig.4 )
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- AS-• (ii)t a,(t-(j a(x6)+'a
In this case, the characteristic equation (4) changes somewhat

and takes the following form
F+ e (2a. t-s + ++ -••a

-sCs-Ia,){+'(s+a,) tza* -+-(sa, =- (+
-0 (12)

With 3eries and Side Capacity

Assume that the series ( solid capacity of tube-wall ) and side

capacity have infinite thermal resistance in the axial and no resistance

in the radial directions. In the case of P-C, for example, the

fundamental equations are ( See Fig.5 ),

0 + :2N .(lb) -C 'ý- I+k(% (13)

T_ 61 (L , (Ph Z) A b ,-'P"hi)

-Lz: = 6 (9--?S)
From the above equations, the 3rd order characteristic equation

with complex coefficients can be obtained. The result is:

s+,+, l,'S,+6,+b )- -s ,+b, +++( ++,,,.

and Equations (3) changes to

8i i i ii i



el 0 O , & 83 , 0,0e,

1-0 1- #'61-0 1- 1-1
(0) (0)

l. eo

(W) (C) (b) (C)

Fig. 6 Case P-C, 1-3 pass heat ex- Fig.7 Case C-P, 1-3 pass heat ex-

changer. changer.

b,
- -h- ., a- /

S+4+___b____ l a (15)

-6+ -5,k• bl÷ +

The transfer functions may be obtained through a similar procedure.

1-3 Pass Heat Cxchanger

Case P-C-P:

This is a parallel-counter-parallel flow heat exchange process.

The fundamental equations are as follows, when no solid capacity exists.

18- +a(- )(6

--

bl 6 a og,- + • -)+aL -o)

The temperature variations of each fluid when input fluid temperature

change is sinusoidal ( & ) are:

-(all ri (17)

Z(Ae A j&DkX+4Dbeh9- A4,e-),e

where, D1 , D2 , D3 , A4 are the constants of integration, and plP2,P3

are the roots of
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+ ~(~~)-~,s'+A&&j S(S+4M&Jf is) +,34J=O (18)

and P4 - ( 1 + s ) (1()

The (, P are given by :.quation (3).

If shell input is considered, from the similar boundary conditions

as 1-2 pass type, as shown in Fig.b(b), the constants of integration

are determined and the transfer function GpCp_stýS) = 130/6i is

obtained:

( e!2-- e- =) + - (#X2 z2 .e (20)

(21)

Changing input and output relations as in Fig.6(c), we get

+ ý5 - (Oi-1 e6+ý'-)]/A (22)

Case C-P-C :

This is the case of counter-parallel-counter flow heat exchange

process. See Fig.7(a). The fundamental equations are:

hz -- 9
-N + 09(23)

-•,~ ~a • (, + & (ez- I) t a(L •

From which we get8, = (ol. , ,e' + .L•.LP-+ 0( D3e '+,Ase )_4" !
61=(,De'+~ +4jeýA)e )

OAsr (24)
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where, DIP D2 , D3 , A5 are the integration constants and pI, P2 0 P3

are the three roots of

S+3&>O (25)

and w "a, + s (26)

a, P can be expressed by Equation (3) as before.

Shell side input: From the boundary conditions shown in Fig.7(b),

we gct the following transfer function through a similar procedure

as before.

q -st ( = (•(2,-f . -O(z(- ,

+ (:e2~

+ ~ e(27)

where, ( 3 - )e xp-p,

t (20(3-3X# O.AV (28)

Tube side input: From the boundary conditions in Fig.7(c), we get

the following result:

1-4 Pass Beat Exchanger

Case P-C-P-C: Assuming as before, the fundamental equations are:i+4 -a(e-o,)

A+4 =

11

- = i ' ii i i| | (30)



6"I1o 0-i _-0o t- 1-1 6.

S0 (a( 6,

0.. 0. 0.. 0.
0 (C) (b) (C) 0

FIg.8 Case P-C-P-C, 1-4 pass heat FIg.9 Case C-P-C-P, 1-4 pass heat
exchanger. exchang er.

From which, we get

e =(0gE A- 06 ELe tA E3 e + B

where, El, £2, E3 , h44, B5 are the constants of integration, cx,

are obtained from Bquation (3), and P1, p2, P3 are the three roots of

the following equation.

I9 + I(4•.+,',) -l,(.a,+s)-•; &iA S)>(' +' +,aj =.o (32

p4 = - ( h +5s) (33)
=(A +E (34)

Shell input: From the boundary conditions shown in Fig.8(b), we get

the transfer function
~ppc)(S 2 -(S~ + +)+Ila (32)

+4 (o--@ .a,,)e+J/s (35)

Tube input: See Fig.8(c). The transfer function is:

12
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cae ,_,, + Ps.- +.",) { - A- (0,- )A ,- (36)
Case C-P-C-P: The fundamental equations are,

a t ý _18-9- , 24 = •,c-~

The transfer functions can be obtained through the procedure
described before:
Shell input: See Fig.9(b).

C~pcS-()2 (eýý* e-Ps)((4~- e)~~ P. +4)eh4

+ 06 A.,) e~' )P Iz~s ~ J~iI (38)
Tube input: See Fig.9(c).

Q~p~p-t (s) = ( eki- e4441, - (aj(t-p)} eh

4 c,-A (.Aeký pý-(,,p ,6ý 4AO (39)
where, pp P2` P3 are the roots of Equation (32', cx, jP are to be

obtained from Equations (3), and p4V P5 are given by Equations (33)
and (34) respectively.

+{C-P-(4--)X * t6 e + ea (OI4O(3-9-(L-0U3 M k

Cases With More Than Four Tube-passes

The above mentioned procedures can be equally applied to the
heat exchangers which have more than four tube-passes.

The procedure is rather complicated when the number of tube-pass
is odd.

For example, let us consider the (2n+l) pass heat exchanger:

13



db

,--3.47. C (purecouterjlow) C
/ -4.88. C-P-C -90"

-5.09. P-CC-P b~c
_- - - 5.1 5 P-C-P-C ,C-P-C-P

5- .19. n db a.a
5.£3, P-C-P
6.19, P (puLreparallcl-jlow) 0 77 180"

-10 - 7.96,M (bo+n .luid mixedcase) -20 -b.c

Fig.1O Comparison of static charac- -40 C Gd C
teristics of multipass heat exchang-
ers for r = 1, total a, = total a .. 1
2. .0 -W

Fig.ll Frequency response of 1-2
pass heat exchangers for r 1,, a,

1.

The 3rd order characteristic equation is;

For the types P-C-P----

9 + F{(2'-+ 1)k +rS. -{(y 1-ts•i-aa.}-S(yta 1~Y(a-iS)-(z-ntJ)&}-_0 (41)

which corresponds to Equation (18). The remainder p values are given
by n. n-I repeated roots of P4 9 P5 respectively.
For the types C-P-C----

S+ •"{(2 )&s} s s2(aI-)'-& }" + s• +1,1; =0 (42)

which corresponds to Equation (25). The remainder p values are given

by n-I, n repeated roots of P4 ' P 5 respectively.

For the (2n) pass heat exchanger, the characteristic equation

corresponding to Equations (4) and (32) is as follows for both

P-C-P-C - 4nd C-P-C-P--- :

+ P ZIf +tS) - P (I,+s).-(S.+ +S(S ta,)2•it. j (43)

The remainder p values are given by n-i repeated roots of P4 ' P5.

Thus, the dynamic response of these multi-pass heat exchangers
can be obtained through the use of these roots. The order of the
equations never exceeds three so long as all tube-passes are identical
and the number of shell pass is one.

If the number of tube-pass approaches infinity, this method becomes
very complicated, but on the other hand the temperature gradient in

14



a=

C c -- 9

db

-20- d

-40 c

0.1 1 l0-w

Fig.12 Frequency response of 1-3, 1-4 pass heat ex-

changers for shell-side Input, r = 1, total al =

total a = 2.

one tubepass becomes almost zero, therefore we can consider this

case as a crossflow type heait exchanger with both fluids mixed

normal to the directions of flow respectively. The static character-

istics of this case has already been obtained (l5). Although the

dynamic response of it is relatively easy to obtain, since the dead

time may not essentially be equal, the phase characteristics can not

be obtained. Consequently, we can use only the static response

formulas to obtain the limiting value of dc gain in this case.

Numerical Example of Frequency Response

Static and dynamic responses are compared using the obtained

transfer function formulas neglecting the heat capacities of solid.

A set of the system parameters used are: r = 1, total al = total a = 2.

In other words, equal heat exchange conditions for all heat exchangers

are assumed.

Fig.lO shows that the dc gain patterns possess quite systematic

relations each other. Note that the response of a heat exchanger

with more than two tube-passes lies between C and P. Also note that as

the number of tube-passes increases, the effects of counter-and

parallel-flow in individual passes are averaged each other and the

response approaches to the value when the number of tube-pass is infinity.

Fig.ll shows the frequency response of 1-2 pass heat exchanger.

Note that the phase curves of Gpc-st(jW) and GCP-ts(Jw) has a

15



TOP

Q 0

(a) Lumped-parameter model of 1-2 pass heat ex-
changer.

\STEPINPUT 0,

(c)-1 Indicial response.

-20 , / (b.1 Analog-computer ctesut.
-40

input.

peak value and gain curves are oscillatory ror a certain Irequency
range. P and C denote the responses of the pure parallel and counter-

flow heat exchangers respectively.
Fig.12 shows the responses of the 1-3, 1-4 pass heat exchangers for

shell input. N•ote that the response curves may be oscillatory about

w> 1.5.
From Figs.ll, 12, following results may be observed and summarized:

(1) The phase lag increases with the number of tube-passes.
(2) In the very low frequency range, the gain approaches to the value

given by the dc gain and phase lag is small, which means dhe whole
length of shell-pass and tube-pass are effective.

16
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(3) In the medium frequency range, input and output relations have

a m-arked effect on the frequency response characteristics.

(4) In the high frequency range, both the phase I•nd the gain curves

become oscillatory for w > 1.5, which might be due to the inter-

action between shell-pass and tube-pass.

(5) The phase lag ;gould be larger and the gain would be more attenuated

when solid capacities are added in a prgctical heat exchanger,

especially at high frequency range.

.Analog Qomputer Test

Although several analog circuits for a pure parallel-and counter-
flow heat exchanger have already been published (16),(17), the author
devised a simpler method using ordinary analog computer to investigate

the dynamic response.
Considering case P-C and dividing the heat exchanger with no wall

capacity as shown in Fig.13(a) to four equal lumped systems, gives

461 +(+i = (,a +2,AD

3-•W

W +(a, ,9 =e9 + A,®

+ (a÷,)o t + a®

7C a,) ,=o + a,e,J0,W", (44)

'Tt-VALI 07+ ag®j

fT+(2.2a
(+2• +,e A @, + a.(0 + o,

T- + (2;L + )e,0 =e,3 + a (9, ,

The analog computer circuit using the same system parameters as in

the former numerical example is shown in Fig.13(b).
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GEEAO POLYNITE PIPE
PCOPPER TUBE

HEAT EXCHANGER•T sooo MM - , -
ROCK¶ WOOL

GAS 30mm tficft

ELECTRONIK
RECORDER

Fig.14 Schematic diagram of experimental apparatus,
frequency-response measurement.

o •2O _ 0

0- 0-

It) db

0 -180" _0 - -180'

1 10

STHEORETICAL _ -j30
EXEIMNA @- THEORETICAL / w

EXPEEREMENTALA IQ@!
X (65 EXPERIMENTALL a_ ,

0.1 10 Vmn 0.1 1 10 i/Mn
(a) Frequency responses tor shell- (b) Frequency responses for tube-

side input. side input.
Fig.15 Experimental results.

Fig.13(c) shows the frequency response and the transient response

for shell-side input. In some frequency ranges the phase curve shows

evidently a peak value, which would approach the one for the exact

distributed system as the number of lumps increases.

Experimental Results

The frequency response of the multi-pass heat exchanger is quite

different than the others for 1-2 pass as has been demonstrated by the

numerical example of Fig.ll and Fig.12.

The author has made experiments on a two-pass heat exchanger as

shown in Fig.14. The length of the heat exchanger was chosen 10 meters

18



1 LTEMPERATURE oJ

SHELL FLUID or TUBE FLUID
SET POINT CHANGE

I: PIOx.I 1 /Mn P-C 1 ' 2 3 --

P 10 a

0 1 2 3 4 5 6 7 8 9-mn

C-P 1 1 2 3-mn

SET POINT CHANGE P_ _ _ _

1 I mn 0 1 2 ' 3-ms
P 10 Y

.•P- . .40.

0 1 2 3 4 5 6 7 8 9-mn C-P 2 3 -mn
F18.17 Closed-loop transient responses to (.)
step-function disturbances, upper diagram
shows the responses for (a) in FIg.15(a),
lower diagram shows the responses for (b) 0 1 2 3(M

in Pig.15(a). Fig.1 6 Indicial responses.

so as to cover theoretical peak of the phase shift curve. The heat
exchange process is water-to-water. The shell material was "polynite"
in order to decrease the effects of side capacity: tube-pass was thin
( 0.3 mm ) copper tube. The test conditions are:

for for
A - 0.368 m2 shell-side input tube-side input
Ch= 8.815>(l0-3 kcal/m*C

ca- 122.7 X1073 kcal/'OC a, 3.01 2.86
HR - 0 a a 0.45 0.43
L- H/v- 1 n. . ....
v=- v +10 m/an, r=1 5.94 6.12
"i- 0.102 kcal/m"0  a" 0.92 0.81
v - 0,682 kcal/a°C 8

b 70.8 62.5
b2  68.7 70.8
b 0.25 0.22

Temperature was recorded by Yamatake-Honeywell Blectronik Potentio-
meter with bare Cu-constantan wire ( 0.2 mm t ) as the temperature

19



sensing elements, the response speed of which is sufficiently high

for the dynamic response measurements.

The experimental results which involve the effects of series and

side capacities are shown in Figs.15, 16.
Fig.15(a) shows the frequency responses for shell-side input, (b)

for tube-side input. Favorable agreements are seen between the
theoretical and the experimental results. Four cases in Fig.15 each
corresponds to the four cases in Fig.16 which shows the transient
responses,

Note that the phase shift characteristics of case ) is quite
similar to that of case (9) , but the gain characteristics is different,
this may be due to the difference between the heat capacities of the

input side fluid and output side fluid.

Although the same remarks can be said for the cases ®, (, the

effects of large dead time are remarkable.

Control of 1-2 Pass Heat Exchanger

As can be seen from the experimental results, the choice of input

and output are especially important for control applications. This

fact can be evidently seen in the closed loop response as follows:
Fig.17 shows the responses for shell-side input when P and PI

control actions were used.
Above figure in Fig.17 resulting from the case S in Fig.15 shows

very stable response; lower one from the case @ in Fig.15 shows far

unstable response.
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Appendix

A technique for obtaining the roots of the characteristic equation

is to be described. In general, the third-order characteristic
equations with s - jw may be written in the form

p3 + p2 ( 1 + Jn_ ) + P ( U2 + J2 ) + m + JU3 - o (45)

where m&s and nos are real numbers, and are function of the variable
Co.

Substituting p = u + jv into the above equation, and equating
both the real and the imaginary parts to zero yield the following
two equations.

u3+ U2ml+ u( m2 -2vnI -3v 2 ) -v 2ml-vn2 + 3 . 0
v 3+ v 2n_+ v(-m 2 -2umal-3u 2 ) --2nj -n-3 0 (46)

Three pairs of curves can be drawn on the u-v complex plane from

these two equations, and the three roots pI' P 2 and P3 can be

found from the intersecting points of the curves.

As an example, consider Equation (4) with r = 1, and a, a - 1.

By letting s - jco, the equation becomes

p3 + P2( 2 + jw,) + p( w 2 _ 1 -2Jw ) + 4w2 + ji (2 _ 3 )a0 (47)
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Fig.18 Auxiliary curves to obtain the roots of 0
Equation (47).
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Pig.19 Three roots of characteristic

equation on complex plane for r 1 .,
a = a= .

In order to find the values of p t s for o - 2, first, the pair of
equations corresponding to Equation (46) are found.

u 3+ 2u 2 + u( -3V 2 -4v +3 )-2v 2 + 4v + 16= 0 (48)
v3+ 2v 2 + v( -3u2 -4u-3 )-2u 2 + 4u- 2= 0 (49)

By letting u = 3,2,1,0, and etc. in Equation (48), two values of
Tos that satisfy the equation are evaluated for each value of u.

The result is the u-curves shown in solid lines in Fig.18. The

v-curves are obtained in likewise manner, and are -shown in dotted
lines in the same figure. The three intersecting points are the

roots of the Equation (47).
Although the accuracy of the p1 s may be improved by expanding

the u, v scale about the points of intersection, the following

technique used by the author is recommended for its simplicity.
Considering the regeon u > 0, v> 0 only, and expanding scales, one

obtain Pl = 0.89 + J 2.16. Next, divide Equation (47) with w = 2

by p- 0.89- j 2.16.
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2p + p(2.89+j4.16) -3 4135+j5.9448 -- (a)

p-O.89-J2.16 ) p 3 + p 2 (2 +j2 )+ p(3 -j4 )+16 +j2

p 3_ p 2 (0.89+j2.16)

p 2 (2.89+j4.16)+ p(3 -j4

p2 (2.89+j4.16)+ p(6.4135-j9.9448)

p(-3.4135+J5.9448)

p(-3.4135+Jj5.9448)+15. 8 7 8 7 83+j2 .082288

0.121217-JO. 082288

- (b)

In this division, 0.89 and 2.16 are modified individually so as

to reduce the residual (b) as small as possible. The final results are

0.8950 and 2.1630. Then from the quotient (a), obtained through this

procedure, the rest of p values can be easily obtained. The values

are:

P2 = - 2.5320 - J 2.0902

P3 = - 0.3629 - J 2.0728

Although this division may appear to be rather troublesome, this

is more efficient than obtaining each intersecting points separately.

Applying the same procedure for each w, other p values can be

obtained as shown in Fig.19

24

COMPTON PRE[SS fNC.

',..Mo~svov . NJ.


